报告题目 | Exploring non-equilibrium phases of matter using controlled small quantum systems |
报告人 | Prof. Myung-Joong Hwang |
报告人单位 | Duke Kunshan University |
报告时间 | 2021-03-19 (周五) 10:00 |
报告地点 | 上海研究院4号楼329报告厅(物质楼B1102同步视频) |
主办单位 | 中国科学院量子信息与量子科技创新研究院 |
报告介绍 | 报告摘要:Advances in quantum technologies are pushing towards building complex quantum systems from individual atoms, ions, photons, and solid-state qubits. The engineered quantum many-body systems are often constantly driven by external fields and always in contact with external bath. Together with a great degree of controllability for microscopic interactions, they offer an ideal platform to explore non-equilibrium phases of light and matter in driven and open settings, about which little is known. The biggest challenge in this endeavor however lies at the difficulty of scaling up the system size while maintaining controllability. In this talk, I will introduce an approach that circumvents the issue of scalability based on the notion of finite-component system phase transition[1,2,3], thereby allowing the realization of non-equilibrium phases of matter with controlled quantum systems that are currently available in labs [4,5]. I will show how the simultaneously large spin-boson coupling strength and detuning lead to the thermodynamic limit of infinite boson excitations in which finite-component quantum systems could undergo a superradiant phase transition and how such an exotic limit can be engineered in physical systems such as ion-traps. Finally, the recent experimental realization of the finite-component system phase transition in trapped-ion will be discussed. [6] |