报告题目 | 后摩尔时代半导体前沿物理 |
报告人 | 骆军委 研究员 |
报告人单位 | 中国科学院半导体研究所半导体超晶格国家重点实验室 |
报告时间 | 2021-05-21 (周五) 10:00 |
报告地点 | 上海研究院4号楼329报告厅(物质楼B1502同步视频) |
主办单位 | 中国科学院量子信息与量子科技创新研究院 |
报告介绍 | 报告摘要:集成电路已经接近物理极限,微电子技术已经从“微电子科学”转向“纳电子科学”,从“摩尔定律时代”进入“后摩尔时代”,面临“没有已知解决方案”的基本物理问题挑战,如何延续摩尔定律是当前最重要的前沿科技。迫切需要发展突破硅CMOS器件性能瓶颈的新材料、新结构、新理论、新器件和新电路等系统性的创新体系,以适应未来对半导体技术“更高速、更智能”的需求。硅基光电子集成芯片和硅量子计算是后摩尔时代的两个主要技术路线,在此报告中将介绍我们力图解决硅基发光和硅基量子计算关键瓶颈,为延续摩尔定律提供的新方法和新思路。包括发展了半导体直接带隙和间接带隙形成机制的统一理论,解决了硅形成间接带隙不发光的困惑,理论上证明了广泛研究的硅量子点无法实现高效发光,排除了硅量子点硅基发光方案,并提出掺杂应变锗直接带隙发光的硅基发光新方案,为解决硅基发光世界难题奠定了理论基础。对于硅基量子计算,Rashba自旋轨道耦合是实现自旋全电操控的基本物理效应,我们发现硅一维量子线和二维量子阱的空穴存在新型线性Rashba效应,推翻了公认的三次方Rashba效应,对锗空穴量子比特实现快速逻辑运算提供了理论支持;设计出能谷劈裂超过7 meV的硅锗超晶格结构,为解决硅量子比特材料能谷劈裂关键瓶颈提供了理论支撑。 |